
A Case for Application-Aware Grid Services
Gabriele Garzoglio, Andrew Baranovski, Parag Mhashilkar, Anoop Rajendra*, Ljubomir Perkovi�**

Computing Division, Fermilab, Batavia, IL; * University of Texas at Arlington, TX
** School of Computer Science Telecommunications and Information Systems, DePaul University, Chicago, IL

INTRODUCTION

In 2005, the DZero Data Reconstruction project
processed 250 tera-bytes of data on the Grid, using
1,600 CPU-years of computing cycles in 6 months.
The large computational task required a high-level of
refinement of the SAM-Grid system, the integrated
data, job, and information management infrastructure
of the RunII experiments at Fermilab. The success of
the project was in part due to the ability of the SAM-
Grid to adapt to the local configuration of the
resources and services at the participating sites. A
key aspect of such adaptation was coordinating the
resource usage in order to optimize the typical
access patterns of the DZero reprocessing
application. Examples of such optimizations include
database access, data storage access, and worker
nodes allocation and utilization.

A popular approach to implement resource
coordination on the grid is developing services that
understand application requirements and preferences
in terms of abstract quantities e.g. required CPU
cycles or data access pattern characteristics. On the
other hand, as of today, it is still difficult to implement
real-life resource optimizations using such level of
abstraction. First, this approach assumes maximum
knowledge of the resource/service interfaces from the
users and the applications. Second, it requires a high
level of maturity for the grid interfaces. To overcome
these difficulties, the SAM-Grid provides resource
optimization implementing application-aware grid
services. For a known application, such services can
act in concert maximizing the efficiency of the
resource usage. We describe what optimizations the
SAM-Grid framework had to provide to serve the
DZero reconstruction and montecarlo production. We
also show how application-aware grid services fulfill
the task.

Even restricting our system to manage resources for
montecarlo generation and data reconstruction only, it
was still a challenge to run efficiently jobs with such
different characteristics. In order to let the grid organize
the usage of the resources efficiently, we decided to
expose details of the applications to the grid.

We present a few examples where the knowledge of the
application helps the grid optimize the resource utilization.
We use these examples to show that application-specific
knowledge helps grid services optimize resources and run
grid jobs efficiently.

(1) DATABASE ACCESS PROBLEM

Grid jobs submitted to an execution site are split into
multiple parallel instances of the same application by the
SAM-Grid grid-to-fabric interface. This typically results in
dozens to hundreds of jobs starting approximately at the
same time and, therefore, accessing key resources
essentially concurrently.

In practice, not all the services have the same degree of
accessibility. In particular for montecarlo generation, the
parameters describing what type of physics to generate
were accessed from a central database, which initially
responded with a “denial of service” to 40% of the jobs.
Introducing retrial with randomized exponential back off
reduced the final job failure rate to 5%. Despite the
reduced failure rate, grid jobs and their retrials increased
the load of the database to a point where interactive
access was extremely inconvenient (minutes per query).

Comparison of different characteristics among three typical computation activities of
the DZero experiment. The bottom table focuses on the input/output data size. The

numbers represent the order of magnitude.

OPTIMIZATION PROBLEMS

High energy physics applications have different resource
utilization requirements. The SAM-Grid meta-computing
infrastructure is often used to run montecarlo and data
reconstruction (data filtering) for the DZero experiment at
Fermilab.

This problem was properly solved by informing the grid of
the database access characteristics of the montecarlo
application. All the hundreds of jobs submitted by the grid,
in fact, were parallel replicas of a single grid job and,
therefore, required access to the same input parameters
from the database.

The grid-to-fabric interface was enhanced to perform a
single database access per grid job, when the job entered
the site. The information was saved and redistributed to
the parallel jobs by internal cluster transport mechanisms.
This solution reduced the “denial of service” failure rate to
essentially 0% and still maintained a high availability for
interactive database accesses.

In conclusion, access to a grid resource (the
database) was optimized by instructing grid
components (the grid-to-fabric interface) of the
characteristics of the application (parallel jobs
requiring the same input parameters).

(2) DATA STORAGE ACCESS PROBLEM

Different applications have different typical input data
access patterns. For DZero, data reconstruction
applications begin data processing when a single input
file, typically 1 Gigabyte in size, is delivered to the worker
node. Instead, data merging applications, used in
production operations to concatenate files typically 200
Megabytes in size, begin processing when multiple
“small” input files are delivered to the worker node.
Optimizing access to the storage resources with such
different regimes is a concern.

In the SAM-Grid, applications transfer files from storage
services that maintain queues of data access requests.
The storage services, in fact, control their load by
granting access to the data transfer servers a few
requests at the time. Access to a transfer server is
granted in the order in which the access request is
submitted. When reconstruction and merging applications
use the same data queue to access their input, transfer
requests for the various input files are interleaved. This
leads to inefficiencies, because in real life, on a cluster,
reconstruction jobs are one or two order of magnitude
more abundant than merging jobs. This means that
requests for each input file of a merging application is
interleaved with a dozen input files of reconstruction
applications. Therefore, before starting processing data, a
merging application often needs to wait for these multiple
reconstruction transfers to occur, thus substantially
increasing its idle time. For a cluster of 900 CPU, this idle
time is between one and two hours.

This inefficiency can be reduced by instructing the grid of
the input data access characteristics of the application.
Knowing the number of required input data files, the data
storage service can organize requests from
reconstruction applications in a queue different from the
requests from merging applications. Thus, a few merging
applications only compete amongst themselves for file
access, drastically reducing their idle time.

In conclusion, as in the previous, example access to
grid resources (data files) was optimized by
instructing grid components (the storage service) of
the characteristics of the application (multiple or
single input data requirement).

A diagram representing queues of requests for file access. On the left, a
single queue manages requests from reprocessing jobs (straight lines),
and merging jobs (dashed and dashed-dotted lines). Reprocessing jobs
are two orders of magnitude more abundant than merging jobs. Merging
job 1 needs to access five input files before it can start running (dashed
lines, bold for clarity). On the right, requests from merging and
reprocessing jobs are managed by two different queues. If access
requests are granted one at the time, the queue depth for merging job 1 is
much shorter than in the case of the single queue (left diagram). If the
data storage server knows the typical data access pattern of the jobs, it
can optimize access to the data. The SAM-Grid storage elements have
knowledge of the typical data access patterns of each application.

(3) WORKER NODES ALLOCATION PROBLEM

The grid-to-fabric interface of the SAMGrid submits
multiple batch jobs for every grid job entering the site.
How many worker nodes should be allocated for a given
application? In general, to accomplish the same amount of
computation for a grid job, the fewer batch jobs are
submitted, the longer each job runs, and vice versa. There
is an acceptable range for the running time of a job. Batch
jobs should not run too long to minimize the probability of
termination before completion. Jobs are typically
terminated because they run beyond the maximum wall-
clock time allowed by the local scheduler, or because they
are evicted due to a higher-priority job entering the
scheduler, or because of hardware failures. On the other
hand, batch jobs should not run too short in order to
maximize the ratio between running time and setup time
i.e. the time needed to prepare the job environment (in the
SAM-Grid typically around half an hour).

The “suitable” expected running time is managed by the
grid controlling the number of worker nodes allocated for
running the application. It should be noted that
applications may have additional constraints on the
number of jobs. These constraints are dictated by
considerations on ease of bookkeeping and of recovery
after failures. In any case, the number of worker nodes to
allocate depends on the type of application. For
reconstruction applications, the grid-to-fabric interface
allocates a worker node for every file in the dataset
specified for the grid job. Given the computational
requirements of the reconstruction application, this
approach gives an acceptable running time of a few hours
on a modern CPU and eases bookkeeping and recovery
operations. For montecarlo applications, the interface
computes the number of worker nodes to be allocated by
dividing the total number of events to be produced as
specified for the grid job by the “optimal” number of events
per job. The “optimal” number of events is a parameter
configured at the site, considering the speed of the
average CPU at the site, the computational requirements
of the montecarlo application, and other scheduler
constraints (maximum allowed wallclock time, etc.).

In conclusion, as in the previous examples, allocation
of grid resources (worker nodes) is optimized by
instructing grid components (the grid-to-fabric
interface) of the characteristics of the application
(computational requirements of the application and
other constraints).

(4) MINIMAL RESOURCE IDLE TIME PROBLEM

Grid jobs are often internally composed of interdependent
tasks. We let the grid manage the order of execution of
each internal task/job automatically. This automation
minimizes the idle time between job submissions, thus
minimizing the idle time of the resources.

In order to decide whether to submit a job, the grid must
be able to determine whether the jobs on which it depends
were successfully executed. In general, determining the
success of a job is a difficult task. In case of complex
computational activities, success is generally never
defined only by the exit status of the job. To determine
whether a montecarlo generation job was successful, for
example, the grid has to check the number of events
produced by the job by querying a bookkeeping database
and compare this number with the number of events
originally requested. Success is determined by policy:
typically, if more than 90% of the events have been
produced, the job is successful. For reconstruction
applications the success policy is defined differently:
typically a job is successful only if it has reconstructed all
the input files, unless subsequent recovery jobs fail twice
on the same event with the same error, thus exposing a
corrupted input file. At any rate, having the grid determine
the success of a job is an application-specific task.

In conclusion, as in the previous examples, the idle
time of grid resources is minimized by instructing grid
components (the job management component) of the
characteristics of the application (policy defining the
success condition).

CONCLUSIONS

Application-specific knowledge is important in the
optimization of grid resources. Two approaches are
possible:
1) Applications communicate their requirements and
preferences in terms of abstract resource/service-specific
quantities. This is difficult to achieve as it requires a very
high level of maturity of the grid interfaces and a thorough
understanding of application requirements.
2) Applications rely on Application-Aware Grid Services for
resource optimizations. This is less general but easier to
implement and extend.

The SAM-Grid used successfully Application-Aware Grid
Services for grid resource optimization.

